Serotonin in The Brain: It’s Role in maintaining the Survival of nerve cells in Alzheimer’s Disease

Emma Kamelia, Hadiyat Miko, Marni Br Karo, Cahyono Kaelan, Andi Asadul Islam, Mochammad Hatta, Muh Nasrum Massi, Ilhamjaya Patellongi, Jumaraini T, Muh Nasrullah, Marhaen H, Maria Bintang

Abstract


Serotonin signaling is central to depression and anxiety disorders, but could also play important roles in the pathogenesis of several age-related disorders, including Alzheimer’s disease. Alzheimer's disease (AD) is the most common form of dementia affecting 35 million individuals worldwide and this is expected to increase to 115 million by 2050.Therefore, modulation of defined serotonin receptors by specific ligands represents a promising tool for treatments for neurodegenerative diseases like AD. Serotonin neurons located in the raphe nucleus of the hindbrain have crucial roles in regulating brain functions and brain development where it regulates neurite outgrowth, synaptogenesis and cell survival. This paper provides a review the synthesis of serotonin and an overview of the involvement of the serotonergic system in AD Keywords: Serotonin; nerve cell survival; alzheimer's disease

References


Apollini, S., Montilli, C., Finocchi, P., Amadio, S., 2009. Membrane compartements and purigenic signaling: P2X receptors in neurodegenerative and neuroinflammatory events. FEBS J. 276, 354-364

Banasr, M., Hery, M., Printemps, R., Daszuta, A., 2004. Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone. Neuropsychopharmacology. 29,450–460

Brezun, J.M., Daszuta, A., 1999. Depletion in serotonin decreases neurogenesis in the dentate gyrus and the subventricular zone of adult rats. Neuroscience. 89, 999–1002e

Cirrito, J.R., Disabato, B.M., Restivo, J.L., Verges, D.K., Goebel, W.D., Sathyan, A., Hayreh, D., D’Angelo, G., Benzinger, T., Yoon, H., Kim, J., Morris, J.C., Mintun, M.A., Sheline, Y.I., 2011. Serotonin signaling is associated with lower amyloid-beta levels and plaques in transgenic mice and humans. Proc. Natl.Acad.Sci.USA. 108. 14968-14973

Côté, F., Thévenot, E., Fligny, C., et al., 2003. Disruption of the non neuronal tph1 gene demonstrates the importance of peripheral serotonin in cardiac function". Proc. Natl. Acad. Sci. U.S.A. 100 (23), 13525–30.

Cochet, M., Donneger, R., Cassier, E., Gaven, F., Lichtenthaler, S.F., Marin, P., Bockaert, J., Dumuis, A., Claeysen, S., 2013. 5-HT4 Receptors Constitutively Promote the Non-Amyloidogenic Pathway of APP Cleavage and Interact with ADAM10. ACS Chem. Neurosci. 4, 130–140.

Claeysen, S., Bockaert, J., Giannoni, P., 2015. Serotonin: A new hope in alzheimer’s disease?. ACS Chem.Neurosci. 6, 940-943

Delarasse, C., Auger,R., Gonnord, P., Fontane, B., Kanellopoulos, J.M., 2011.The purigenic receptors P2X7 triggers α-secretase dependent processing of the amyloid precursor protein. J.Biol.Chem. 286, 2596-2606

Dooley, A.E., Pappas, I.S., Parnavelas, J.G., 1997. Serotonin promotes the survival of cortical glutamatergic neurons in vitro. Exp Neurol. Nov. 148(1), 205-14

Franke, H., 2011. Role of G-protein coupled receptors (GPCRs) for purines and pirimidines in mediating degeneration and regeneration under neuroinflammatory process. Purigenic Signal. 7, 1-5

Frazer, A., Hensler, J.G., 1999. Understanding the neuroanatomical organization of serotonergic cells in the brain provides insight into the functions of this neurotransmitter". In Siegel, G. J. Basic Neurochemistry. Agranoff, Bernard, W., Fisher, Stephen, K., Albers, R., Wayne., Uhler, Michael, D., 1964 (Sixth ed.). Lippincott Williams and Wilkins. ISBN 0-397-51820-X. , Dahlstrom and Fuxe (discussed in [2]), using the Falck-Hillarp technique of histofluorescence, observed that the majority of serotonergic soma are found in cell body groups, which previously had been designated as the Raphe nuclei.

Gaspar, P., Cases, O., Maroteaux, L., 2003. The developmental role of serotonin: news from mouse molecular genetics. Nat Rev Neurosci 4: 1002–1012.

Giannoni, P., Gaven, F., de Bundel, D., Baranger, K., Marchetti-Gauthier, E., Roman, F.S., Valjent, E., Marin, P., Bockaert, J., Rivera, S., Claeysen, S., 2013. Early administration of RS 673333, a specific 5-HT4 receptor agonist, prevents amyloidogenesis and behavioral deficits in the 5XFAD mouse model of alzheimer’s disease. Front.aging Neurosci. 5, 96.

González-Flores, D., Velardo, B., Garrido, M., González-Gómez, D., Lozano, M., Ayuso M.C., Barriga, C., Paredes, S.D., Rodríguez, A.B., 2011. Ingestion of Japanese plums (Prunus salicina Lindl. cv. Crimson Globe) increases the urinary 6-sulfatoxymelatonin and total antioxidant capacity levels in young, middle-aged and elderly humans: Nutritional and functional characterization of their content. Journal of Food and Nutrition Research. 50(4), 229-236.

Hannon, J., Hoye,r D., Hoyer., 2008. Molecular biology of 5-HT receptors. Behav. Brain Res. 195 (1), 198–213.

Hebert, L.E., Weuve, J., Scherr, P.A., Evans, D.A., 2013. Alzheimer disease in the United States (2010-2050) estimated using the 2010 Census. Neurology. 80(19),1778-83

Jacobs, B.L., Praag, H., Gage, F.H., 2000.Adult brain neurogenesis and psychiatry: a novel theory of depression. Mol Psychiatry. 5,262–269

Krabbe, G., Matyash, V., Pannasch, U., Mamer, L., Boddeke, H.W.G.M., Kettenmann, H., 2012. Activation of serotonin receptors promotes microglial injury-induced motility but attenuates phagocytic activity. Brain, Behavior, and Immunity. 26, 419-428

M. Berger., J. A. Gray., B. L. Roth., 2009.The expanded biology of serotonin. Annual Review of Medicine. vol. 60, 355–366

M. M. Rapport., A. A. Green., I. H. Page., 1948. Serum vasoconstrictor (serotonin). IV. Isolation and characterization. The Journal of Biological Chemistry. vol. 176, 1243–1251

Santarelli, L., Saxe, M., Gross, C., Surge,t A., Battaglia, F., Dulawa, S., et al., 2003. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science.301,805–809

Scott, A.Small ., Sam Gandy., 2006. Sorting through the Cell Biology of Alzheimer's Disease: Intracellular Pathways to Pathogenesis..Neuron J. 52(1), 15–31.

Thathiah, A., De Strooper, B., 2011. The role of G protein-coupled receptors in the pathology of Alzheimer’s disease. Nat. Rev. Neurosci. 12, 73–87.

Upton, N., Chuang, T.T., Hunter, A.J., V irley, D.J., 2008. 5-HT6 receptor antagonists as novel cognitive enhancing agents for Alzheimer’s disease. Neurotherapeutics 5, 458–469.

V.Erspamer., B. Asero., 1952. Identification of enteramine, the specific hormone of the enterochromaffin cell system, as 5-hydroxytryptamine. Nature. vol. 169, no. 4306,800–801

Wang, C., Yu, J.-T., Miao, D., Wu, Z.-C., Tan, M.-S., Tan, L., 2013. Targeting the mTOR Signaling Network for Alzheimer’s Disease Therapy. Mol. Neurobiol. 49, 120–135.

Wilkinson, D., Windfeld, K., Colding-Jөrgensen, E., 2014. Safety and efficacy of idalopirdine, a 5-HT6 receptor antagonist, in patients with moderate Alzheimer’s disease (LADDER): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol. 13, 1092–1099.

Wuwongse, S., Chang, C.C., Andrew, C.K., 2010. The putative neurodegenerative links between depression and Alzheimer’s disease. Progress in Neurobiology. 91, 362–375.

Young, S.N., 2007. How to increase serotonin in the human brain without drugs. Rev. Psychiatr. Neurosci. 32 (6), 394–99


Refbacks

  • There are currently no refbacks.

Comments on this article

View all comments